American Diabetes Association
Browse
db21-0734r2_Supplementary_Tables.xlsx (1.83 MB)

Causal graph between serum lipids and glycemic traits: a Mendelian randomization study

Download (1.83 MB)
figure
posted on 2022-05-27, 14:35 authored by Ziwei Zhu, Kai Wang, Xingjie Hao, Liangkai Chen, Zhonghua Liu, Chaolong Wang

  

We systematically investigated the bidirectional causality between high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), triglycerides (TG), fasting insulin (FI), and glycated hemoglobin A1c (HbA1c) based on genome-wide association summary statistics of Europeans (sample size n = 1,320,016 for lipids, 151,013 for FI, and 344,182 for HbA1c). We applied multivariable Mendelian randomization (MR) to account for the correlation between different traits, and constructed a causal graph with 13 significant causal effects after adjusting for multiple testing (P < 0.05/20). Remarkably, we found the effects of lipids on glycemic traits were through FI from TG (β = 0.06 [95% CI: 0.03, 0.08] in unit of 1-SD for each trait) and HDL-C (β = -0.02 [-0.03, -0.01]). On the other hand, FI had strong a negative effect on HDL-C (β = -0.15 [-0.21, -0.09]) and positive effects on TG (β = 0.22 [0.14, 0.31]) and HbA1c (β = 0.15 [0.12, 0.19]), while HbA1c could raise LDL-C (β = 0.06 [0.03, 0.08]) and TG (β = 0.08 [0.06, 0.10]). These estimates derived from the inverse-variance weighting method were robust when using different MR methods. Our results suggested that elevated FI was a strong causal factor of high TG and low HDL-C, which in turn would further increase FI. Therefore, early control of insulin resistance is critical to reduce the risk of type 2 diabetes, dyslipidemia, and cardiovascular complications. 

Funding

This work was funded by the Natural Science Foundation of China (82021005, 81973148 and 82003561).

History

Usage metrics

    Diabetes

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC