SUPPLEMENTARY MATERIAL

CD8⁺ T cells variably recognize native versus citrullinated GRP78 epitopes in type 1 diabetes

Marie Eliane Azoury^{1*}, Fatoumata Samassa^{1*}, Mijke Buitinga², Laura Nigi³, Noemi Brusco³,

Aïsha Callebaut², Matthieu Giraud⁴, Magali Irla⁵, Ana Ines Lalanne¹, Alexia Carré¹, Georgia

Afonso¹, Zhicheng Zhou¹, Barbara Brandao¹, Maikel L. Colli⁶, Guido Sebastiani³, Francesco

Dotta³, Maki Nakayama⁷, Decio L. Eizirik^{6,8}, Sylvaine You¹, Sheena Pinto⁹, Mark J.

Mamula¹⁰, Yann Verdier¹¹, Joelle Vinh¹¹, Soren Buus¹², Chantal Mathieu², Lut Overbergh²

Roberto Mallone^{1,13}

¹Université de Paris, Institut Cochin, CNRS, INSERM, 75014 Paris, France.

²KU Leuven, Laboratory of Clinical and Experimental Endocrinology, 3000 Leuven, Belgium.

³University of Siena, Department of Medicine, Surgery and Neuroscience, Diabetes Unit and Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, 53100 Siena, Italy.

⁴Université de Nantes, INSERM UMR1064, Centre de Recherche en Transplantation et Immunologie (CRTI), 44093 Nantes, France.

⁵Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France⁶Université Libre de Bruxelles, Center for Diabetes Research and Welbio, Medical Faculty, 1070 Brussels, Belgium.

⁷Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA.

⁸Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA.

⁹Deutsches Krebsforschungszentrum (DKFZ), Division of Developmental Immunology, 69120 Heidelberg, Germany.

¹⁰Yale University School of Medicine, New Haven, CT 06510, USA.

¹¹ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS USR3149, 75005 Paris, France.

¹²Panum Institute, Department of International Health, Immunology and Microbiology, D-2200 Copenhagen, Denmark.

¹³Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, 75014 Paris, France.

*M.E.A. and F.S. contributed equally to this work.

SUPPLEMENTARY METHODS

mTEC isolation

For RT-qPCR and proteomics, thymic lobes were harvested from 6-8-week-old C57BL/6 mice and NOD mice, cleaned of connective tissue and fat, cut into fragments, washed in RPMI and gently agitated thrice for 30 s to release excess thymocytes. At each wash, the fragments were allowed to settle for 10 min on ice, followed by removal of the thymocyte-rich supernatant. Fragments were subsequently digested for 20 min at 37°C in ultra-low attachment 6-well plates (Corning) using 5 ml of ice-cold Liberase TH (2.5 U/mL; Roche) supplemented with 100 U/ml DNase I (Applichem). Supernatants were then removed and collected in ice-cold PBS supplemented with 0.5% BSA and 2mM EDTA. This enzymatic digestion was repeated twice for 15 min with 2.5 ml Liberase. Syringe needles (18G and 25G) were used to break up tissue after the second and third digestion, respectively. Cells were filtered through a 100-µm mesh before enrichment for TECs. To this end, 2x10⁸ cells/ml were incubated in PBS/2% FCS with 2.6 µg/ml anti-CD90.2 mAb (clone 30-H12, Sigma) on a rotating shaker for 30 min at 4°C, washed and plated $(1 \times 10^7 \text{ cells/ml})$ on panning plates previously coated overnight with 10 µg/ml goat anti-rat Ab (Sigma) in 50 mM Tris buffer pH 9.5. After 30 min at room temperature, cells were collected, washed and incubated with the Fixable Viability Dye eFluor780 (eBioscience). Cells (40x10⁶/ml) were then stained for CD45-PE/Cy7 (RRID:AB_2734986), MHC Class II (MHC-II)-AF488 (RRID:AB_493138 and RRID:AB_493147 for C57BL/6 and NOD EPCAM-BV421 (RRID:AB 2563983), mice. respectively), BP-1-APC (RRID:AB_2762698), Ulex europaeus agglutinin-1 (UEA-1-biotin; Vector Laboratories), and streptavidin-PE (eBioscience). Cells ($40x10^{6}$ /ml) were sorted with a BD Influx ($100-\mu$ m nozzle, 18 psi) equipped with 488 nm (200 mW), 640 nm (120 mW), 405 nm (100 mW) and 561 nm (150 mW) lasers. Sorted cells were collected in 1.5-ml tubes in PBS/2% FCS.

For RNAseq, mouse thymi were extracted from a pool of 4 C57BL/6 mice, cut into small pieces, agitated into RPMI medium to release thymocytes, and digested with collagenase D (1 mg/ml; Roche) and DNase I (1 mg/ml; Sigma) for 30 min at 37 °C. The remaining fragments were digested with collagenase/dispase (2mg/ml; Roche) and DNase I (2 mg/ml) at 37 °C to obtain a cell suspension. After filtration through a 70-µm mesh, cells were resuspended in PBS containing 1% fetal bovine serum (FBS) and 5 mM EDTA. The remaining thymocytes were removed by magnetic depletion with CD45 MicroBeads (Miltenyi). Cells were then stained with CD45-PerCPCy5.5 (1:50; RRID:AB_893340), Ly51-PE (1:800; RRID:AB_313365), and MHC-II I-A/I-E-APC (1:1,200; RRID:AB_469455). MHC-II^{high/low} mTECs (CD45⁻Ly51⁻ MHC-II^{high/low}) were sorted into TRIzol (ThermoFisher) on a BD FACSAria III instrument.

RT-qPCR and measurement of Padi enzymatic activity

Total RNA was extracted from sorted mTECs or 50 islets, using the Single Cell RNA Purification Kit (Norgen) and cDNA synthesized with SuperScript VILO (Invitrogen). The RT-5'qPCR forward (F) and reverse (R) primers were: Padi2-F: CCGCCGGGTATGAAATAGTCC-3', *Padi2-*R: 5'-CGCCGGTGTACTTGACCAC-3': 5'-AGAGGGAAATCGTGCGTGAC-3', 5'housekeeping Act-F: Act-R: 5'-CAATAGTGATGACCTGGCCGT-3'; housekeeping *Rpl27*-F: GTCGAGATGGGCAAGTTCAT-3', Rpl27-R: 5'-TTCTTCACGATGACGGCTTT-3'; and predesigned Hprt TaqMan primers (ThermoFisher). RT-qPCR was performed using 4 pmol primers, 0.2 µl cDNA and 5 µl Fast SYBR Green Master Mix (Applied Biosystems) on a StepOnePlus RT-PCR System (Applied Biosystems). The relative fold gene expression was calculated using the delta-delta Ct method.

Padi activity was measured with the Ab-based assay for Padi activity (ABAP; ModiQuest Research).

Liquid chromatography-tandem mass spectrometry (LC-MS/MS)

mTECs were washed thrice with PBS at 400g for 5 min and lysed in a buffer composed of 7 M urea, 2 M thiourea, 4% CHAPS, 40 mM Tris base, 1% dithiothreitol and Complete protease inhibitors (Roche). Debris were removed by centrifugation for 10 min at 13,000 rpm at 4°C. Samples were dialyzed and reduction, alkylation, protein precipitation, digestion and desalting performed as described (1). The purified peptides were vacuum-dried and dissolved in mobile phase A, containing 2% acetonitrile and 0.1% formic acid. An estimated final amount of 0.5 $\mu g/\mu l$ was injected. The sample was separated by reversed-phase chromatography using a micropillar array column (µPACTM C18, 200 cm, PharmaFluidics). A linear gradient of mobile phase B (0.1% formic acid in 98% acetonitrile) from 1% to 40% in 80 min was followed by a steep increase to 100% mobile phase B in 5 min. After 5 min at 100% mobile phase B, a steep decrease to 1% mobile phase B was achieved in 5 min and 1% mobile phase B was maintained for 35 min with a flow rate of 750 nl per minute. LC-MS/MS was performed on a Q-Exactive Plus equipped with a nanospray ion source (ThermoFisher). Full-scan spectrum (350 to 1850 m/z, resolution 70,000, automatic gain control 3E6, maximum injection time 100 ms) was followed by high-energy collision-induced dissociation (HCD) tandem mass spectra with a run time of 120 min. Peptide ions were selected for fragmentation by tandem MS as the 20 most intense peaks of a full-scan mass spectrum. HCD scans were acquired in the Orbitrap (resolution 17,500, automatic gain control 1E5, maximum injection time 80 ms). Peptides were identified by MASCOT (Matrix Science) using SwissProt (Homo sapiens, 169,779 entries) as a database via Proteome Discoverer 2.2, incorporating Percolator for peptide validation. Oxidation (M), deamidation (N/Q), and deamidation (R) (referring to citrullination), were included as variable modifications, carbamidomethylation (C) as a fixed modification. Two missed cleavages were allowed, peptide tolerance was set at 5 ppm and MS/MS tolerance at 20 mmu. MS/MS spectra were checked manually for the presence of citrullinated residues as described (2).

RNAseq and gene set enrichment analysis (GSEA)

Total RNA was extracted following the TRIzol protocol, adding GlycoBlue (ThermoFisher) as an RNA carrier. This RNA was used to generate poly-A-selected transcriptome libraries using the non-directional TruSeq V3 RNA Sample Prep Kit (Illumina) following the manufacturer's protocol. Sequencing was carried out on an Illumina HiSeq 2000 machine and was paired-end (2x100 bp) for MHC-II^{high} mTECs and single-end (50 bp) for MHC-II^{low} mTECs. These datasets have been deposited under GEO: (GSE submitted). RNAseq data from published (3) MHC-II^{high} and MHC-II^{low} mTEC (GSE140815) and from *Aire^{-/-}* MHC-II^{high} mTEC (GSE140683) biological replicates were obtained with the same procedure.

Low-quality sequencing reads were removed using the Illumina CASAVA 1.8 pipeline and homogenized to 50-bp reads by trimming and merging the paired-end 100-bp reads. These reads were then aligned to the mm9 mouse reference genome using Bowtie (4). Read numbers were generated using the intersectBed with parameters -f 1.0 and the coverageBed programs of the BEDtool distribution (5), with a GTF annotation file that was generated from the UCSC Table Browser, in choosing mm9 mouse genome/Genes and Gene Predictions/RefSeq Genes/refGene. Reads per kilobase per million mapped reads (RPKM) values were then computed for each sample according to the transcript length of each gene and the global number of reads that map to the mm9 genome.

The enrichment of sets of genes driving PTMs between wild-type (WT) and *Aire*^{-/-} MHC-II^{hi} mTECs and between MHC-II^{high} and MHC-II^{low} mTECs was analyzed with the GSEA software (6). To this end, the sequencing read numbers corresponding to each group of biological replicates in each comparison were normalized using DESeq (7) and used to run GSEA with a "classic" scoring scheme and n=10,000 permutations. The conservative family-wise error rate statistics (P_{FWER}) was used to determine whether a set of genes was significantly over-represented in a group of mTECs versus another.

Microarray data from MHC-II^{high} mTECs isolated from 3 WT and 3 *Aire^{-/-}* NOD mice were obtained from the NCBI GEO database (GSE12073) (8). CEL raw data files were processed with GenePattern (9) and the ExpressionFileCreator module for normalization using the RMA method (10) with background correction. Normalized data were plotted as fold change expression. False discovery rate *p* values were computed using the NCBI GEO2R online tool. Enrichment of PTM enzyme gene sets between WT and *Aire^{-/-}* NOD MHC-II^{high} mTECs was analyzed using GSEA on normalized microarray expression data using a "classic" scoring scheme and nominal *p* values.

Confocal microscopy

Frozen thymic tissue sections from 6-8-week-old WT and *Aire^{-/-}* C57BL/6 mice and from NOD mice were fixed with 2% paraformaldehyde (Sigma) and incubated for 10 min in a saturation buffer composed of 0.1 M Tris pH 7.4, 5% mouse serum, 2% bovine serum albumin (Axday), 0.01% Triton X-100. Sections were then stained as previously described (11), with primary antibodies: rabbit anti-mouse keratin-14 (RRID:AB_2565048), mouse anti-PADI2 (RRID: AB_2881762), AF488-labeled rat anti-mouse Aire (RRID:AB_10854132); and secondary antibodies: Cy5-labeled goat anti-rabbit IgG (RRID: AB_2534032) and Cy3-labeled goat anti-mouse IgG (RRID:AB_893530). Sections were mounted with Mowiol (Calbiochem) and acquired on a LSM 780 confocal microscope (Carl Zeiss Microscopy).

Statistics

Significance was assessed with a cutoff value of α =0.05 using two-tailed Student t test or Mann-Whitney U test according to normal or non-normal distribution, respectively. Variables displaying unequal variances were analyzed with the Welch t test. Paired datasets were analyzed with the Wilcoxon signed rank test.

Supplementary Figure 1. Gating strategy for the combinatorial analysis of GRP78 MMr⁺CD8⁺ T cells in T1D and healthy donors. (A) Frozen-thawed PBMCs from healthy donor C59 were magnetically depleted of CD8⁻ cells before staining, acquisition and analysis. Cells were sequentially gated on small lymphocytes, singlets, live cells (Live/Dead Aqua⁻), CD3⁺CD8⁺ T cells, and total PE⁺, PE-CF594⁺, APC⁺, BV650⁺, BV711⁺, and BV786⁺ MMr⁺ T cells. Using Boolean operators, these latter gates allowed selective visualization of each double-MMr⁺ population by including only those events positive for the corresponding fluorochrome pair (see Research Design and Methods). (B) The final readout obtained for the 15 peptides analyzed: 12 native/citrullinated GRP78 peptides, a GRP78₁₅₂₋₁₆₁ (GRP78-152) peptide without R residues, and PPI₆₋₁₄ and Flu-MP₅₈₋₆₆ controls). Events corresponding to each epitope-reactive population are overlaid in different colors within each plot, with MMr⁻ events overlaid in light gray. The small dot plots on the right of each panel depict CD45RA (x axis) and CCR7 (y axis) expression in the corresponding MMr⁺ fraction. Numbers in each panel indicate the MMr⁺CD8⁺ T-cell frequency out of total CD8⁺ T cells and the percent naive (CD45RA⁺CCR7⁺) fraction among MMr⁺ cells. This first gating strategy only allows to visualize CD8⁺ T cells reactive to either the R or X isoform of each GRP78 peptides, and these T cells are therefore designated as 'R only' or 'X only', respectively. This strategy was therefore further modified to differentially visualize CD8⁺ T cells reactive to R only, X only or both peptides (see Supplemental Figure 2).

Supplementary Figure 2. Modified combinatorial gating strategy to analyze the cross-reactivity between R-GRP78 and X-GRP78 peptide isoforms. A representative example is shown for healthy donor C59. Each panel shows one of the peptides studied: GRP78-9 (A), -261 (B), -298 (C), -360 (D), -435 (E), and -502 (F).

First, CD8⁺ T cells recognizing only the R-GRP78 (blue, 'R only') or X-GRP78 isoform (red, 'X only') were gated on double MMr⁺ events, excluding the other four fluorochromes (first two dot plots of each panel, which are the same of Supplemental Fig. 1; MMr⁻ events overlaid in black). For example, in panel B '261R only' MMr⁺ cells (PE⁺BV786⁺) were visualized by gating on PE⁺BV786⁺PE-CF594⁻APC⁻BV650⁻BV711⁻ events; and '261X only' MMr⁺ cells (PE⁺PE-CF594⁺) were visualized by gating on PE⁺PE-CF594⁺APC⁻BV650⁻BV711⁻ BV786⁻ events.

Second, CD8⁺ T cells recognizing R-GRP78 or X-GRP78 peptides (i.e. including cross-reactive T cells) were gated on triple MMr⁺ events, i.e. by excluding three fluorochromes but not the non-shared fluorochrome coding for the MMr loaded with the other peptide isoform (third and fourth dot plots of each panel). For example, in panel B '261R' and '261X' MMr⁺ cells (i.e. cross-reactive or not; PE⁺BV786⁺ and PE⁺PE-

CF594⁺, respectively) were visualized by gating on PE⁺BV786⁺APC⁻BV650⁻BV711⁻ (i.e. not excluding PE-CF594 as before) and PE⁺PE-CF594⁺APC⁻BV650⁻BV711⁻ (i.e. not excluding BV786), respectively.

Third, these two dot plots are combined and visualized by plotting them for the two fluorochromes not shared by the R and X isoform (first dot plot in the bottom line of each panel). In this final dot plot, single-positive events correspond to the 'R only' and 'X only' fractions (blue and red, respectively), while double-positive events correspond to the 'R and X' fraction (i.e. cross-reactive; green). Events negative for all MMr fluorochromes (PE⁻PE-CF594⁻APC⁻BV650⁻BV711⁻BV786⁻) are overlaid in black in each dot plot to set the double- or triple-MMr⁺ gates. The bottom right dot plots of each panel depict CD45RA and CCR7 expression in the corresponding MMr⁺ fractions using the same blue, red and green color code for 'R only', 'X only' and 'R and X' MMr⁺ events, respectively.

Supplementary Figure 3. Gating strategy and distribution of MHC-II^{low} and MHC-II^{high} mTECs in C57BL/6 and NOD mice. (A) mTECs from C57BL/6 mice. (B) mTECs from NOD mice. mTECs were gated as $CD45^{-}$ EPCAM⁺ BP1^{neg/low} Lectin (UEA-1)^{high} and MHC-II^{low} or MHC-II^{high}. (C) Ratio (median ± range) of MHC-II^{high}/MHC-II^{low} mTECs in 6-8-week-old C57BL/6 (n=4) and NOD mice (n=5); **p*=0.032 by Mann-Whitney U test.

Supplementary Figure 4. Citrullinated peptides identified in mTECs of 10-week-old C57BL/6 mice. (A) List of the citrullinated peptides identified. (B) Spectrum of the R5-citrullinated myosin-9 peptide KQLV<u>R</u>QVR.

Supplementary Figure 5. Gene expression of PADI citrullinating enzymes in human immature HLA Class II (HLA-II)^{low} and mature HLA-II^{high} mTECs (n=3 donors). Data was extracted from our published RNAseq datasets (12).

Supplementary Figure 6. Enrichment of *Padi* isoform genes and PTM enzyme gene sets in mature MHC-II^{high} mTECs from WT vs. *Aire^{-/-}* NOD mice (n=3/each). (A) Fold change expression of *Padi* isoform genes in MHC-II^{high} mTECs from 4-week-old WT vs. *Aire^{-/-}* NOD mice analyzed by DNA microarray. *p=0.04, **p=0.01 by false discovery rate method (GEO2R). (B) Enrichment of PTM enzyme gene sets in MHC-II^{high} mTECs from WT vs *Aire^{-/-}* ^{/-} NOD mice. Red lines indicate the 0.05 p cut-off value for statistical significance [for citrullination, p=0.05, corresponding to a WT normalized enrichment score (NES) of 1.5]. Data is from GEO GSE12073 (8).

Supplementary Figure 7. ATAC-Seq and Chip-seq profiles of *Padi* genes in MHC-II^{high} mTECs from C57BL/6 mice. ATAC-seq and Chip-seq datasets (GSE114713) from Handel et al. (13) were analyzed. (A) *Padi* genes display three hallmarks of Aire-dependent expression: a closed chromatin ATAC profile (first row), near-absence of the activating chromatin modifications H3K4Ac and H3K9Ac (second and third row) and presence of the repressive modification H3K27me3 throughout the gene locus (fourth raw). (B) Conversely, the *Grp78* gene displays an open chromatin ATAC profile, presence of the activating chromatin modifications H3K4Ac and H3K9Ac at transcriptional start sites and absence of the repressive modification H3K27me3, in line with an Aire-independent expression. The *Tgm2* gene displays an intermediate profile. (C-D) Profiles of reference Aire-independent (C) and Aire-dependent genes (D) are shown as controls.

Supplementary Figure 8. Enrichment of PTM enzyme gene sets in immature MHC-II^{low} vs mature MHC-II^{high} mTECs from WT C57BL/6 mice (n=3). Red lines indicate the 0.01 P_{FWER} cut-off value for statistical significance (for citrullination, P_{FWER}=0.0045, corresponding to a MHC-II^{high} mTEC normalized enrichment score of 2.3).

	PE	PE-CF594	APC	BV650	BV711	BV786
PE		261X	PPI6-14	9R	9X	261R
PE-CF594			298R	298X	360R	360X
APC				435R	435X	502R
BV650					152	502X
BV711						Flu MP58-66
BV786						

Supplementary Table 1. Combinatorial HLA-A2 MMr panel used in Figure 2. See Supplementary Figures 1-2 for details.

nPOD case				Age	Age T1D /rs) T2D (yrs)	Positive	C-peptide (ng/ml)	Pancreas MMr+ cells						
		RRID	Sex	(yrs)		aAbs		GRP78 9R	GRP78 9X	GRP78 360R	GRP78 360X	ZnT8 186-194	UCN3 1-9	MelA 26-35
1D (n=10)	6070*	SAMN15879127	F	23	7	IA-2/mIAA	<0.05	0	16		53	74	39	0
	6113*	SAMN15879170	F	13	2	mIAA	<0.05	0	0		0			
	6161*	SAMN15879217	F	19	7	IA-2/mIAA	<0.05	12	45			124		0
	6211*	SAMN15879267	F	24	4	GAD/IA-2/ZnT8/mIAA	<0.05	3	4		0	30		0
	6212	SAMN15879268	М	20	5	mIAA	<0.05	0	0		0	0		
	6237	SAMN15879293	F	18	12	GAD/mIAA	<0.05	7	0		0	267	8	0
	6242	SAMN15879298	М	39	19	IA-2/mIAA	<0.05	0	0	0		66		0
	6258*	SAMN15879313	F	39	37	mIAA <0.05 0 4 0 11		118	19	0				
	6325*	SAMN15879379	F	20	6	GAD/IA-2 0.14 13 19 0 28		28	28	0				
	060217	NA	F	39	21	GAD	NA	0	41	0			142	
	6080	SAMN15879137	F	69	NA	GAD/mIAA	1.84	0	0		0	55		25
	6101	SAMN15879158	М	65	NA	GAD	26.18	0	0		0	0		
	6123	SAMN15879180	F	23	NA	GAD	2.01	0			0	0		
aAb+ (n=9)	6151	SAMN15879207	М	30	NA	GAD	5.49	0	5		0	0 28		0
	6154	SAMN15879210	F	49	NA	GAD	<0.05	0	0	0	64		21	0
	6171	SAMN15879227	F	4	NA	GAD	8.95	0	7		8	37		0
	6347	SAMN15879401	М	9	NA	mIAA	3.26	6	49	7		33		0
	6388	SAMN15879441	F	25	NA	GAD/Miaa	1.38	0	7	0		34	0	0
	6397	SAMN15879450	F	21	NA	GAD	12.8	4	4	0		42	6	0
	6103	SAMN15879160	М	2	NA	_	0.98	30	0			55	0	0
	6174	SAMN15879230	М	21	NA	—	3.00	4	0		4			
	6179	SAMN15879235	F	20	NA	—	2.74	0	7		0	96	0	0
11)	6182	SAMN15879238	М	3	NA	_	2.28	0	4		0	23	4	0
=u)	6227	SAMN15879283	F	17	NA	_	2.75	5	12		0	3	18	0
betes	6234	SAMN15879290	F	20	NA	_	6.89	0	0	0		6	0	0
o dia	6271	SAMN15879325	М	17	NA		11.47	0	0	0		0		
Ž	6287	SAMN15879341	F	57	NA		4.75	0	0	0		4		0
	6289	SAMN15879343	М	19	NA		8.05	0	0	0		0		
	6357	SAMN15879410	М	5	NA		8.82		128			0		
	6366	SAMN15879419	F	21	NA	_	0.41	0	35		0	0		
+1)	6028	SAMN15879085	М	33	17	—	22.40		0			0		
(n=4+	6059	SAMN15879116	F	19	0.3	—	10.68	0	0			0		
titis (n	6273	SAMN15879327	F	45	2		3.17	3	7					
ncrea	6275	SAMN15879329	М	48	2	_	3.46	0	0			0		
D/pa														
T2	6439	SAMN15879492	М	27	NA	—	5.33	5	22					

Supplementary Table 2. nPOD cases analyzed by *in-situ* tissue MMr staining. The clinical characteristics of each case are reported along with the counts $(x10^{-3})$ of MMr⁺ cells/mm² pancreas section area for each of the indicated peptides. Positive sections are marked in red. Case #6287 (presenting a circumscribed neuroendocrine tumor in the pancreatic pan-body region; pan-tail region analyzed here) was classified as a non-diabetic control. T1D case #060217 is from the EUnPOD biobank. Control duodenum sections were also tested for T1D cases marked with an asterisk. NA, not applicable or not available; mIAA, micro-insulin aAbs. Results for epitopes other than GRP78 are from (12, 14).

PTM	Mouse gene	Mouse UniProt #	Human Uniprot #	PTM	Mouse gene	Mouse UniProt #	Human Uniprot #
	Kat2a	Q9JHD2	Q92830		Gstm7	Q80W21	n/a
	Naa10	Q9QY36	P41227		Gsto1	O09131	P78417
	Naa11	Q3UX61	Q9BSU3		Gsto2	Q8K2Q2	Q9H4Y5
	Naa15	Q80UM3	Q9BXJ9		Gstp1	P19157	P09211
	Naa16	Q9DBB4	Q6N069		Gstp2	P46425	n/a
	Naa20	P61600	P61599		Gstp3	Q8VC73	n/a
	Naa25	Q8BWZ3	Q14CX7		Gstt1	Q64471	P30711
	Naa30	Q8CES0	Q147X3	Glutathionvlation	Gstt2	Q61133	P0CG29
Acetvlation	Naa35	Q6PHQ8	Q5VZE5	· · · · · , · · ·	Gstt2b	n/a	P0CG30
	Naa38	Q9D2U5	Q9BRA0		Gstt3	Q99L20	n/a
	Naa50	Q6PGB6	Q9GZZ1		Gstt4	Q9D4P7	A0A1W2PR19
	Naa60	Q9DBU2	Q9H7X0		Lancl1	089112	043813
	Nat8	09.11Y7	09UHE5		Mast1	091VS7	P10620
	Nat9	Q3UG98	Q9BTE0		Mast2	A2RST1	Q99735
	Sirt1	0923E4	096EB6		Mast3	09CPU4	014880
	Sirt2		OBIX I6		Asnh	O8BSY0	012797
	Sirt7	OSBK 19	O9NRC8		Faln1	Q0D010	096779
Carboxylation	Gacy	090YC7	Δ7ΥΔ96		Egin?	091YE2	096KS0
Cisteinvlation	Cyck	abaron	741760	Hydroxylation	Lginz	QUITEE	QUUNUU
(non-enzymatic)	n/a			Tryatoxylation	Ealn3	0911174	09H679
(non-enzymano)	Padi1	097185	09111.06		Imid6	09ERI5	O6NYC1
	Padi?	008642	097218		Kdm8		O8N371
		000042	001200	Malonylation	Ramo	QUONTO	QUINDT
Citrullination	Padi3	Q97184	Q9ULW8	(non-enzymatic)	n/a		
	Padi4	097183	Q9UM07		Antkmt	Q501.12	Q9BQD7
	Padi6	Q8K3V4	Q6TGC4		Atosckmt	Q9D173	Q6P4H8
	Ntan1	064311	096AB6		Camkmt	03112.15	077624
Deamidation	Ntag1	Q80WB5	Q96HA8		Fhmt2	Q97148	Q96KQ7
	Gad1	P48318	099259		Icmt	Q9EQK7	060725
Decarboxylation	Gad2	P48320	005329		Kmt5a	02YDW7	09NOR1
2000.200,000.000	Gadl1	080WP8	0670Y3		L cmt1	A2RTH5	0911108
	Fut1	009160	P19526		L cmt2	O8BYR1	060294
	Fut10 (Sec1)	05F2L2	06P4F1		Mettl11h	B2RXM4	05V/VY1
	Fut11	O8BHC9	0495W5		Metti18	090709	095568
	Fut2 (Sec2)	09 11 27	010981		Mettl21a	090010	O8WXB1
	Fut3	n/a	P21217		Mettl21c	08BLU2	05\/7\/1
Fucosylation	Fut4	011127	P22083		Mettl21e	080072	n/a
1 deosylution	Fut7	011131	011130		Mettl22	08R1C6	09BUU2
	Fut8		O9BVC5		N6amt1	ORSKP2	0072012
	FutQ	088810	092231	Methylation	Ndufaf7	0001012	071 502
	Pofut1	000013	O9H488	metrylation	Ntmt1 (Mettl11a)	08R2114	Q7E332
	Pofut2	08V/HI3	092265		Pomt1*	P23506	P22061
	Gat1*	060928	P19440		Pemtd1*	P50013	096MG8
	Gat3n*	n/a	A6NGU5		Prmt1		000873
	Gat5*	097249	P36269		Prmt?	09R144	Q33073 P55345
	Gat6		06P531		Prmt3	0922H1	060678
	Gat7				Prmt/ (Carm1)	09////26	086255
	Geta1	D137/15	000014		Prmt5 (Anm5)	080108	01/7//
Clutathianulation	Coto?	P10649	P00203		Printo (Anino)		014744
Giutatinonyiation	Gsta2	P 10040 P30115	016772		Printo (Anino) Print7 (Anin7)	002220	
	Getal	P2//72	015217		Prmt8 (Anm8)	OGDAK3	
	CotoF	F 2447 Z	015217		Printo (Anino)	QUE ANJ 021121/1/5	060202
	Getk1		09203		Sotd?		008262
	Getm1	P106/9	D00/88		Setd	D58/67	
	Getm2	D15626	D28161		Solu4 Sold7		O8W/T96
	Gotm3	P10630	P20101		38107	QOVILI	QOWIOU
	Getm/	C8R516	003013				
	Gstm5	P48774	P46439				
	Gstm6	035660	n/a				continued
							continuou

Supplementary Table 3. Mouse genes coding for enzymes involved in PTMs. This list was used for the analysis of gene sets presented in Fig. 5G and Supplemental Fig. 5. PTMs involving very large sets of enzymes were excluded, namely glycosylation, phosphorylation, oxidation and ubiquitination. This list does not include enzymes described to selectively modify specific proteins or histones. Asterisks indicate enzymes indirectly involved in PTMs.

PTM	Mouse gene	Mouse UniProt #	Human Uniprot #	PTM	Mouse gene	Mouse UniProt #	Human Uniprot #
Myristovlation	Nmt1	O70310	P30419	Glu/Gln → Pvro-Glu	Qpct	Q9CYK2	Q16769
Wynstoylation	Nmt2	070311	O60551		Qpctl	Q8BH73	Q9NXS2
Nitration (non-enzymatic)	n/a				Creld1	Q91XD7	Q96HD1
Nitrosylation (non-enzymatic)	n/a				Creld2	Q9CYA0	Q6UXH1
	Zdhhc1	Q8R0N9	Q8WTX9		Ero1a*	Q8R180	Q96HE7
	Zdhhc2	P59267	Q9UIJ5		Ero1b*	Q8R2E9	Q86YB8
	Zdhhc3	Q8R173	Q9NYG2		P4hb (Pdia1)	P09103	P07237
	Zdhhc4	Q9D6H5	Q9NPG8	Disulfida	Pdia2	D3Z6P0	Q13087
	Zdhhc5	Q8VDZ4	Q9C0B5	bisunde	Pdia3	P27773	P30101
	Zdhhc6	Q9CPV7	Q9H6R6	ISOINEIIZation	Pdia4	P08003	P13667
	Zdhhc7	Q91WU6	Q9NXF8		Pdia5	Q921X9	Q14554
	Zdhhc8	Q5Y5T5	Q9ULC8		Pdia6	Q922R8	Q15084
	Zdhhc9	P59268	Q9Y397		Qsox1	Q8BND5	O00391
	Zdhhc11	Q14AK4	Q9H8X9		Qsox2	Q3TMX7	Q6ZRP7
	Zdhhc11b	n/a	P0C7U3		Tmx3	Q8BXZ1	Q96JJ7
	Zdhhc12	Q8VC90	Q96GR4		Cat (Cata)*	P24270	P04040
Palmitoylation	Zdhhc13	Q9CWU2	Q8IUH4		Cybb*	Q61093	P04839
	Zdhhc14	Q8BQQ1	Q8IZN3		Mpo*	P11247	P05164
	Zdhhc15	Q8BGJ0	Q96MV8	ROS reduction	Nos1*	Q9Z0J4	C9J5P6
	Zdhhc16	Q969W1	Q969W1		Nos2*	P29477	P35228
	Zdhhc17	Q80TN5	Q8IUH5		Sod1*	P08228	P00441
	Zdhhc18	Q5Y5T2	Q9NUE0		Sod2*	P09671	P04179
	Zdhhc19	Q810M5	Q8WVZ1		Sod3*	O09164	P08924
	Zdhhc20	Q5Y5T1	Q5W0Z9	Sulfation	Tpst1	O70281	O60507
	Zdhhc21	Q9D270	Q8IVQ6	Sulfation	Tpst2	O88856	O60704
				Sulfone	n/a		
	Zdhhc22	A0PK84	Q8N966	(non-enzymatic)		000.000	001/1750
	Zdhhc23	Q5Y513	Q8IYP9	Sumovlation	Sae1	Q9R112	Q9UBE0
	Zdhhc24	Q6IR37	Q6UX98		Uba2 (Sae2)	Q9Z1F9	Q90B12
Palmitoleovlation	Porcn	Q9JJJ7	Q9H237		Igm1	Q9JLF6	P22735
	Notum	Q8R116	Q6P988		Tgm2	P21981	P21980
	Parp1	P11103	P09874	-	Tgm3	Q08189	Q08188
	Parp2	088554	Q9UGN5	Transglutamination	1gm4	Q8BZH1	P49221
	Parp3	Q3ULW8	Q9Y6F1		Tgm5	Q9D7I9	043548
	Parp4	E9PYK3	Q9UKK3		Igm6 (Igm3I)	Q8BM11	095932
	Parpo	Q6P6P7	Q2NL67		Igm/	AZARI8	Q96PF1
	Parpo	Q30D82	Q8N3A8		Afmid	Q8K4H1	Q63HM1
	Parp9	Q8CAS9	Q8IXQ6	$Trp \rightarrow Kynurenine$	Ido1	P28776	P14902
Poly-ADP-ribosylation	Parp10	Q8CIE4	Q53GL7		Ido2	Q8R0V5	Q6ZQW0
	Parp 11		Q9NR21		1002 (1230)	P48776	P48/75
	Parp 12	Q8BZ20	Q9H0J9		Cpe	Q00493	P16870
	Parp14	Q2EMV9	Q460N5		Cpn1	Q9JJN5	P15169
	PARP15	n/a	Q460N3		Cpn2	Q9DBB9	P22792
	Parp16	Q/IMM8	Q8N5Y8		Ctsb	P10605	P07858
	Tiparp (Parp7)	Q8C1B2	Q/Z3E1		Ctsd	P18242	P0/339
	Tinks (Parp5a)	Q6PFX9	095271	Insulin granule	Ctst	Q9R013	Q9UBX1
	Inks2 (Parp5b)	Q3UES3	Q9H2K2	proteases	Ctsl	P06/9/	P0//11
	Fnta	Q61239	P49354		Dpp7	Q9ET22	Q9UHL4
Prenylation	Fntb	Q8K2I1	P49356		Furin	P23188	P09958
	Pggt1b	AUA494BAX1	P53609		PCSK1	P63239	P29120
	Rce1	P57791	Q9Y256		Pcsk2	P21661	P16519
					Tpp1	089023	014773

SUPPLEMENTARY REFERENCES

1. Buitinga M, Callebaut A, Marques Camara Sodre F, Crevecoeur I, Blahnik-Fagan G, Yang ML, Bugliani M, Arribas-Layton D, Marre M, Cook DP, Waelkens E, Mallone R, Piganelli JD, Marchetti P, Mamula MJ, Derua R, James EA, Mathieu C, Overbergh L: Inflammation-Induced Citrullinated Glucose-Regulated Protein 78 Elicits Immune Responses in Human Type 1 Diabetes. Diabetes 2018;67:2337-2348

2. Callebaut A, Derua R, Vig S, Delong T, Mathieu C, Overbergh L: Identification of Deamidated Peptides in Cytokine-Exposed MIN6 Cells through LC-MS/MS Using a Shortened Digestion Time and Inspection of MS2 Spectra. J Proteome Res 2021;20:1405-1414

3. Guyon C, Jmari N, Padonou F, Li YC, Ucar O, Fujikado N, Coulpier F, Blanchet C, Root DE, Giraud M: Aire-dependent genes undergo Clp1-mediated 3'UTR shortening associated with higher transcript stability in the thymus. eLife 2020;9

4. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009;10:R25

5. Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841-842

6. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005;102:15545-15550

7. Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010;11:R106

8. Guerau-de-Arellano M, Martinic M, Benoist C, Mathis D: Neonatal tolerance revisited: a perinatal window for Aire control of autoimmunity. J Exp Med 2009;206:1245-1252

9. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP: GenePattern 2.0. Nat Genet 2006;38:500-501

10. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4:249-264

11. Serge A, Bailly AL, Aurrand-Lions M, Imhof BA, Irla M: For3D: Full organ reconstruction in 3D, an automatized tool for deciphering the complexity of lymphoid organs. J Immunol Methods 2015;424:32-42

12. Gonzalez-Duque S, Azoury ME, Colli ML, Afonso G, Turatsinze JV, Nigi L, Lalanne AI, Sebastiani G, Carre A, Pinto S, Culina S, Corcos N, Bugliani M, Marchetti P, Armanet M, Diedisheim M, Kyewski B, Steinmetz LM, Buus S, You S, Dubois-Laforgue D, Larger E, Beressi JP, Bruno G, Dotta F, Scharfmann R, Eizirik DL, Verdier Y, Vinh J, Mallone R: Conventional and Neo-antigenic Peptides Presented by beta Cells Are Targeted by Circulating Naive CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metab 2018;28:946-960 e946

13. Handel AE, Shikama-Dorn N, Zhanybekova S, Maio S, Graedel AN, Zuklys S, Ponting CP, Hollander GA: Comprehensively Profiling the Chromatin Architecture of Tissue Restricted Antigen Expression in Thymic Epithelial Cells Over Development. Front Immunol 2018;9:2120

14. Culina S, Lalanne AI, Afonso G, Cerosaletti K, Pinto S, Sebastiani G, Kuranda K, Nigi L, Eugster A, Osterbye T, Maugein A, McLaren JE, Ladell K, Larger E, Beressi JP, Lissina A, Appay V, Davidson HW, Buus S, Price DA, Kuhn M, Bonifacio E, Battaglia M, Caillat-Zucman S, Dotta F, Scharfmann R, Kyewski B, Mallone R, ImMaDiab Study G: Islet-reactive CD8+ T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci Immunol 2018;3:eaao4013