American Diabetes Association
Browse
DOCUMENT
Graphic abstract.docx (716.68 kB)
DOCUMENT
DB19-0920R2 Supplemental File.docx (1.94 MB)
DOCUMENT
DB19-0920R2 Supplemental Table.docx (36.28 kB)
1/0
3 files

Branched-Chain Amino Acids Exacerbate Obesity-Related Hepatic Glucose and Lipid Metabolic Disorders via Attenuating Akt2 Signaling

figure
posted on 2020-04-15, 23:13 authored by Ada AdminAda Admin, Huishou Zhao, Fuyang Zhang, Dan Sun, Xiong Wang, Xiaomeng Zhang, Jinglong Zhang, Feng Yan, Chong Huang, Huaning Xie, Chen Lin, Yi Liu, Miaomiao Fan, Wenjun Yan, Youhu Chen, Kun Lian, Yueyang Li, Ling Zhang, Shan Wang, Ling Tao
Branched chain amino acids (BCAAs) are associated with the progression of obesity-related metabolic disorders, including T2DM and non-alcoholic fatty liver disease. However, whether BCAAs disrupt the homeostasis of hepatic glucose and lipid metabolism remains unknown. In this study, we observed that BCAAs supplementation significantly reduced high-fat (HF) diet-induced hepatic lipid accumulation while increasing the plasma lipid levels and promoting muscular and renal lipid accumulation. Further studies demonstrated that BCAAs supplementation significantly increased hepatic gluconeogenesis and suppressed hepatic lipogenesis in HF diet-induced obese (DIO) mice. These phenotypes resulted from severe attenuation of Akt2 signaling via mTORC1- and mTORC2-dependent pathways. BCAAs/branched-chain α-keto acids (BCKAs) chronically suppressed Akt2 activation through mTORC1 and mTORC2 signaling and promoted Akt2 ubiquitin-proteasome-dependent degradation through the mTORC2 pathway. Moreover, the E3 ligase Mul1 played an essential role in BCAAs/BCKAs-mTORC2-induced Akt2 ubiquitin-dependent degradation. We also demonstrated that BCAAs inhibited hepatic lipogenesis by blocking Akt2/SREBP1/INSIG2a signaling and increased hepatic glycogenesis by regulating Akt2/Foxo1 signaling. Collectively, these data demonstrate that in DIO mice, BCAAs supplementation resulted in serious hepatic metabolic disorder and severe liver insulin resistance: insulin failed to not only suppress gluconeogenesis but also activate lipogenesis. Intervening BCAA metabolism is a potential therapeutic target for severe insulin-resistant disease.

Funding

This work was financially supported by the Program for National Science Funds of China (Grants No. 81730011, 81600683 and 81800326) and the National Key R&D Program of China (Grant No. 2018YFA0107400).

History