

Supplementary Fig. 1. BAF60a and BAF60b gene expression in white adipose tissues and their SVFs from *db/db* and control mice.

(A-B) qPCR analysis of BAF60a and BAF60b mRNA expression in iWAT (A) and eWAT (B) obtained from control and *db/db* mice (n = 3). (C-D) qPCR analysis of mRNA expression of marker genes of adipocyte (C) and SVF (D) isolated from adipose tissue of WT mice (n = 3). (E-F) qPCR analysis of BAF60a and BAF60b mRNA expression in iWAT-SVF (E) and eWAT-SVF (F) from control and *db/db* mice (n = 3). (G) Western blots of BAF60a protein expression in PA (0.5 mM) and TNF- α (50 ng/mL)-treated RAW264.7 cells for 48 h. Data represent mean ± SEM. **P* < 0.05, ***P* < 0.01, and ****P* < 0.001.

Supplementary Fig. 2. Generation and characterization of BaMKO mice on chow diet. (A) Genotyping of BaMKO mice. (B-C) Body weight (B) and fasting blood glucose levels (C) of control and BaMKO mice fed with chow diet for 20 weeks (n = 7-8). Data represent mean \pm SEM. ns, no significance.

Supplementary Fig. 3. BaMKO exhibits a mild effect on liver and BAT inflammation in HFD-fed mice.

(A) qPCR analysis of pro-inflammatory genes in iWAT from BAF60a-f/f and BaMKO mice fed with HFD for 20 weeks (n = 5). (B) Tissue weight of liver, Quad and BAT obtained from BAF60a-f/f and BaMKO mice (n = 5-7). (C) Liver triglyceride (TG) content in BAF60a-f/f and BaMKO mice (n = 5-7). (D) Representative H&E staining images of liver sections from BAF60a-f/f and BaMKO mice. Scale bars: 50 μ m. (E-F) qPCR analysis of proinflammatory genes in liver (E) (n = 5-7) and BAT (F) (n = 4-6) from BAF60a-f/f and BaMKO mice. Mice were fed with HFD for 16 weeks prior to tissue dissection and analysis. Data represent mean ± SEM. **P* < 0.05; ns, no significance.

Supplementary Fig. 4. Myeloid-specific BAF60a inactivation modulates polarization and activation of bone-marrow-derived macrophages (BMDMs).

(A-B) BMDMs from BAF60a-f/f and BaMKO mice were stimulated with LPS (100 ng/mL) (n=4) (A) or IL-4 (20 ng/mL) (n=6) (B) for 24 h, the expression of M1 and M2-related genes were determined by qPCR. Data represent mean \pm SEM. **P* < 0.05, ***P* < 0.01 and ****P* < 0.001; ns, no significance.

F

Α

G

Supplementary Fig. 5. Myeloid-specific BAF60a overexpression inhibits proinflammatory macrophage activation.

(A-C) Generation and characterization of myeloid-specific BAF60a overexpression (BaMKI) mice. Schematic diagram of the strategy to generate myeloid-BAF60a overexpression mice (A); qPCR (n = 3) (B) and immunoblotting (C) analyses of BAF60a, b, c mRNA and BAF60a protein expression in BMDMs obtained from control and BaMKI mice. (D) qPCR analysis of the pro-inflammatory genes in PM from control and BaMKI mice treated with LPS (100 ng/ml) for 4 h (n = 3). (E) qPCR analysis of the M2-like macrophage anti-inflammatory genes in PM from control and BaMKI mice treated with IL-4 (20 ng/ml) for 24 h (n = 3). (F) qPCR analysis of the CD11c and CD206 mRNA expression in SVFs from the iWAT and eWAT in control and BaMKI mice (n = 6). (G) Representative H&E staining images of iWAT and eWAT sections from control and BaMKI mice fed with HFD for 16 weeks. Scale bars, 100 μ m. Data represent mean ± SEM. **P* < 0.05, ***P* < 0.01, and ****P* < 0.001; ns, no significance.

Supplementary Fig. 6. Binding profiles of BAF60a and Atf3 to the genome loci of proinflammatory genes.

(A) Gene expression levels of the indicated transcriptional factors in ATM (F4/80+ cells) from eWAT-SVF cells and iWAT-SVF cells of WT control mice as revealed by RNA-Seq. (B-F) Genome browser tracks of CUT&Tag-Seq (BAF60a) and ChIP-Seq (Atf3, H3K4Me3 and H3K27Ac) data in the genomic loci of BAF60a-regulated proinflammatory genes including Ccl2 (B), IL-6 (C) and TNF- α (D), IL-1 β (E), iNOS (F). The ChIP-Seq of H3K4Me3 and H3K27Ac were obtained from ENCODE Database.

Supplementary Fig. 7. Myeloid-specific inactivation of BAF60b and BAF60c in mice exhibited mild effects on diet-induced obesity and glucose homeostasis.

(A-B) Body weight (A) and fasting blood glucose levels (B) in HFD-fed BAF60b-f/f and BAF60b-f/f-Lyz2-Cre (BbMKO) mice (n = 7). (C-D) Body weight (C) and fasting blood glucose levels (D) in HFD-fed BAF60c-f/f and BAF60c-f/f-Lyz2-Cre (BcMKO) mice (n = 6). Mice were fed with HFD for 8 weeks prior to tissue dissection and analysis. Data represent mean \pm SEM. ns, no significance.

Supplementary Fig. 8. Gene expression analysis of Trem2, Cd9 and Gpnmb in adipose tissues and liver from HFD-fed control and BaMKO mice.

(A-C) qPCR analysis of Trem2, Cd9 and Gpnmb mRNA expression in iWAT (A), eWAT (B) and liver (C) of control and BaMKO mice fed with HFD for 16 weeks (n = 6-9). Data represent mean \pm SEM. **P* < 0.05.

Supplementary Table 1.

Genes	Primers 5' to 3'
BAF60a-F	TGGACCCAAATGACCAGAAAA
BAF60a-R	TCTTGTTGTCTAGAGTGGCGATCT
BAF60b-F	GAAGCTGGACCAGACCATCG
<i>BAF60b</i> -R	CGCAGTTCCCGCATTATCTC
BAF60c-F	AGGCTTACATGGACCTCCTAG
<i>BAF60c</i> -R	CATCAGAGTCTTCCGCATCAG
Nrg4-F	CCCAGCCCATTCTGTAGGTG
Nrg4-R	ACCACGAAAGCTGCCGACAG
Adiponectin-F	GCCCAGTCATGCCGAAGATGAC
Adiponectin-R	AGTGCCATCTCTGCCATCACGG
PPARy2-F	GAATGCGAGTGGTCTTCCAT
<i>PPARy2</i> -R	TGCACTGCCTATGAGCACTT
CEBPa-F	AGACATCAGCGCCTACATCGAC
CEBPa-R	GGGTAGTCAAAGTCACCGCCGC
<i>CEBPβ-</i> F	CAAGCTGAGCGACGAGTACA
<i>CEBPβ</i> -R	CAGCTGCTCCACCTTCTTCT
Leptin-F	GAGACCCCTGTGTCGGTTC
Leptin-R	CTGCGTGTGTGAAATGTCATTG
<i>Retn-</i> F	ACAAGACTTCAACTCCCTGTTTC
<i>Retn</i> -R	TTTCTTCACGAATGTCCCACG
<i>Zfp521-</i> F	GGCTGTTCAAACACAAGCG
<i>Zfp521-</i> R	GCACATTTATATGGCTTGTTG
<i>Dlk1-</i> F	GCTGGGACGGGAAATTCTGCGA
<i>Dlk1-</i> R	AACCCAGGTGTGCAGGAGCA
<i>iNOS</i> -F	GAGGCCCAGGAGGAGAGAGAGATCCG
<i>iNOS</i> -R	TCCATGCAGACAACCTTGGTGTTG
<i>Ccl2</i> -F	AGGTCCCTGTCATGCTTCTG
<i>Ccl2</i> -R	TCTGGACCCATTCCTTCTTG
Ccl5-F	TGCCCACGTCAAGGAGTATTT
Ccl5-R	TTCTCTGGGTTGGCACACACT
<i>F4/80</i> -F	ACCACAATACCTACATGCACC
<i>F4/80</i> -R	AAGCAGGCGAGGAAAAGATAG
<i>IL6</i> -F	AGTTGCCTTCTTGGGACTGA
<i>IL6</i> -R	TCCACGATTTCCCAGAGAAC
<i>TNFα</i> -F	AGCCCCCAGTCTGTATCCTT
$TNF\alpha$ -R	CTCCCTTTGCAGAACTCAGG
<i>IL1β</i> -F	TGGCAACTGTTCCTGAACTCAA
$IL1\beta$ -R	AGCAGCCCTTCATCTTTTGG
<i>IL12p40</i> -F	CCAGAGACATGGAGTCATAG
<i>IL12p40</i> -R	AGATGTGAGTGGCTCAGAGT
IFNy-F	TCAAGTGGCATAGATGTGGAAGAA
IFNy-R	TGGCTCTGCAGGATTTTCATG
CDIIC-F	AAAATCTCCAACCCATGCTG
CDIIC-R	CACCACCAGGGTCTTCAAGT
MRC1-F	
MKC1-K	CGGAAIIICIGGGAIICAGCIIC

Mgl1-F	ATGATGTCTGCCAGAGAACC
Mgl1-R	ATCACAGATTTCAGCAACCTTA
Mgl2-F	CAGAACTTGGAGCGGGAAGAG
Mgl2-R	TTCTTGTCACCATTTCTCATCTCCT
<i>IL10-</i> F	GCCAAGCCTTATCGGAAATG
<i>IL10</i> -R	CACCCAGGGAATTCAAATGC
<i>Ym1-</i> F	GGGCATACCTTTATCCTGAG
<i>Ym1</i> -R	CCACTGAAGTCATCCATGTC
Arg1-F	ACACGGCAGTGGCTTTAACC
Arg1-R	TGGCGCATTCACAGTCACTT
Atf3-F	ATAAACACCTCTGCCATCGG
Atf3-R	GCCTCCTTTTCCTCTCATCTTC
36B4 - F	GAAACTGCTGCCTCACATCCG
36B4-R	GCTGGCACAGTGACCTCACACG